
Deconstructing Blockchains: Concepts,
Systems, and Insights

BY KAIWEN ZHANG

ÉTS MONTRÉAL

UNIVERSITY OF QUEBEC

Link to our companion papers:
http://msrg.org/papers/bcbi-tr

fuseelab.github.io

Blockchain @ SACMAT: blockchain-conf.github.io

http://msrg.org/papers/bcbi-tr

ZHANG ET AL. © 2019

Acknowledgments

Collaborators:
◦ Kaiwen Zhang

◦ Hans-Arno Jacobsen

◦ Roman Vitenberg

◦ Mo Sadoghi

fuseelab.github.io

Understanding Blockchains

ZHANG ET AL. © 2019

ZHANG ET AL. © 2019

Comparison with BTC price

ZHANG ET AL. © 2019

Demand for blockchain jobs

ZHANG ET AL. © 2019

computerworld.com/article/3345998/demand-for-blockchain-engineers-is-through-the-roof.html

ZHANG ET AL. © 2019

https://medium.com/altcoin-magazine/blockchain-to-become-a-commonplace-for-fortune-100-companies-3a302526d8eb

https://medium.com/altcoin-magazine/blockchain-to-become-a-commonplace-for-fortune-100-companies-3a302526d8eb

Mining industry in Quebec

ZHANG ET AL. © 2019

Blockchain 101

P1

P2

P3P4

Block 2

Transaction G

Transaction H

…

Block 1

Transaction D

Transaction E

…

Block 0
Genesis

Block

Transaction A

Transaction B

…

Blockchain data structure (replicated at every peer) Peer-to-Peer network

Client 1

Client 2

Cryptography is used to…
…encrypt data, prevent modification, insert new blocks, execute transactions, and query…

the distributed ledger

Consensus

ZHANG ET AL. © 2019

Distributed Ledger Technology (DLT)

Cryptography: the Magic Ingredient!

Encrypt data:

Public Key Encryption

Prevent modification:
Hashed Linked List

Insert new blocks:
Proof-of-Work

Execute transactions:
Smart Contracts

Query the blockchain:

Simple Payment
Verification

Hash(block,nonce) <
0000000XXXXX…

Nounce
(brute-forced)

Validation(Transaction)
Code Hash

(Identical at
all peers)

Merkle Tree

ZHANG ET AL. © 2019

What is a blockchain-based distributed ledger?

An append-only log storing transactions

Comprised of immutable blocks of data

Deterministically verifiable (using the blockchain data
structure)

Able to execute transactions programmatically (e.g.,
Bitcoin transactions and smart contracts)

Fully replicated across a large number of peers (called
miners in Bitcoin)

A priori decentralized, does not rely on a third party
for trust

ZHANG ET AL. © 2019

Comparison with Databases

Single
Machine
DBMSs

Distributed Databases

OLTP OLAP

Logically
centralized
(Single entity)

MySQL,
Oracle, DB2,
…

NewSQL:
Spanner,
VoltDB, …

Distributed
SQL data
warehouses

Relational

BerkeleyDB,
LevelDB

NoSQL: Hbase,
Cassandra, …

Hadoop,
MapReduce

Non-relational

Decentralized
(Public/Private)

Distributed
Ledgers (DLT)

Blockchain

The key distinction is
the use of cryptography
to enable operation in a
decentralized trustless

environment.

ZHANG ET AL. © 2019

Blockchain
Reference
Architecture
This vision diagram
encompasses all aspects
related to blockchain
technologies.

Upper layers capture
application semantics
and their
implementation.

Lower layers are
concerned with
technical system details.

ZHANG ET AL. © 2019

System-Oriented Perspective

ZHANG ET AL. © 2019

Outline
Session 1: Foundations
◦ Bitcoin: Consensus, transactions, networking, rewards

Session 2.1: Beyond Bitcoin
◦ Smart contracts

◦ Platforms: Ethereum, Hyperledger

Session 2.2: Research
◦ System insights

◦ Research directions

Session 4: Hands-on tutorial on Ethereum
◦ Smart contract development and deployment

◦ Tools for deploying and managing Ethereum

ZHANG ET AL. © 2019

Blockchain
Concepts
DEFINITIONS

BITCOIN OVERVIEW

ZHANG ET AL. © 2019

Immutability using Hashing
Blockchain data structure maintained at every peer

P1

P2 P3

P4

Block 3

Block hash:
???

Previous block:
00000090b41bx

???

Block 2

Block hash:
00000090b41bx

Previous block:
000000948fixf

Transaction
0495fjdi

Transaction
1236foer

Transaction
4364rote

Block 1

Block hash:
000000948fixf

Previous block:
000000958fdji

Transaction
1025asde

Transaction
8875iire

Transaction
4236owqe

Block 0

Block hash:
000000958fdji

Previous block:
-

Transaction
4325afde

Transaction
97875ihge

Transaction
4546ofre

Requires a Byzantine
consensus algorithm!

Client 1 Client2

ZHANG ET AL. © 2019

Consensus

ZHANG ET AL. © 2019

Consensus in Bitcoin
Byzantine consensus in history

◦ Dozens of impossibility results since 1983

◦ Does not scale beyond 30 participants

◦ Takes a long time to converge

Bitcoin requirements
◦ Decentralized and public network

◦ Supports 10,000 participants

Key insight: Probabilistic consensus

ZHANG ET AL. © 2019

Make a proposal => Proof-of-Work

Decide a value => Longest branch selection

Announce the decision (finality) => Confirmations wait

Comparison with Basic Paxos

ZHANG ET AL. © 2019

Block Proposal: Proof-of-Work

Each client maintains a mempool of
unconfirmed transactions

Each peer constructs its own block it
wants to propose

◦ Free to pick and choose transactions
from its own mempool

The fastest peer to solve the
cryptopuzzle of its own block can
propose the block to others

◦ The block is sent through the P2P
network

Other peers can verify the validity of
the cryptopuzzle solution

Repeat the process for the next block

ZHANG ET AL. © 2019

P1

P2 P3

P4

Client 1 Client2

Block 3

Proof-of-Work:
000000r9d8fjj

Previous block:
00000090b41bx

Block 2

Proof-of-Work:
00000090b41bx

Previous POW:
000000948fixf

Transaction
0495fjdi

Transaction
1236foer

Transaction
4364rote

Block 1

Proof-of-Work:
000000948fixf

Previous POW:
000000958fdji

Transaction
1025asde

Transaction
8875iire

Transaction
4236owqe

Block 0

Proof-of-Work:
000000958fdji

Previous block:
-

Transaction
4325afde

Transaction
97875ihge

Transaction
4546ofre

Point of view of a miner

Transaction C
Transaction D

…
Transaction N

Hash(block,nonce) <
0000000XXXXX…

Block 3
2 Hash

Tx D
Tx N
Tx C

nonce

A miner verifies and
puts transactions in a

block, finds nonce

Find a valid nonce according to
the difficulty to satisfy the

target (e.g. 0000000XXXXX)

The miner
attaches the

solved block to
the chain, or

stops solving if
someone else
finds a valid

block.
nonce

04934938
nonce

87465523
nonce

87874951

Transaction
D

Transaction
N

Transaction
C

nonce
79146512

Pending Transactions Pool

Pending
transactions are
propagated to

the peers
(miners)

ZHANG ET AL. © 2019

Cryptopuzzles in Bitcoin
The proposer has to find nonce, such that
◦ hash(block_header) < target

target is a fraction of the hash space
◦ Every node recomputes target every 2016 blocks

◦ Such that the average time for the whole network to solve a
cryptopuzzle is 10 min

◦ A block time of 10 minutes ensures a significant amount of work is
required to propose block

◦ Normally, only one block is proposed at a time, which simplifies
consensus

For proposer p,

The solution is fast to verify

ZHANG ET AL. © 2019

𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑛𝑒𝑥𝑡 𝑏𝑙𝑜𝑐𝑘 =
10 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝′𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟

Fork choice rule: longest chain

Common Blockchain

Block 2

Proof-of-Work:
00000090b41bx

Previous POW:
000000948fixf

Block 1

Proof-of-Work:
000000948fixf

Previous POW:
000000958fdji

Block 0

Proof-of-Work:
000000958fdji

Previous block:
-

nonce

Branch 1

Transactions
…

nonce

Transactions
…

nonce

Transactions
…

Block 3

Proof-of-Work:
0000009ff33xe

Previous POW:
00000090b41bx

nonce

Transactions
…

Block 4

Proof-of-Work:
000000zzzbbf4

Previous POW:
0000009ff33xe

Block 5

Proof-of-Work:
000000f32367x

Previous POW:
000000zzzbbf4

nonce

Transactions
…

nonce

Transactions
…

Branch 2

Block 3

Proof-of-Work:
000000hhjg93g

Previous POW:
00000090b41bx

nonce

Transactions
…

Block 4

Proof-of-Work:
???

Previous POW:
000000hhjg93g

nonce

Transactions
…

Due to variance, one
branch will find a block
faster than the other

Here, two blocks 3 are
solved at the same time
by different miners (very

rare occurrence)

When miners receive a
valid block from a longer
branch, they throw away

their own branch
(txs are reverted)

Due to network delays,
different miners begin

working on their version
of block 3

ZHANG ET AL. © 2019

Announcing results: Confirmation wait
When a transaction is included in a newly mined block, it is
said to have “one confirmation”.

Each subsequence block mined afterwards adds one
confirmation to the transaction.

The more confirmations a transaction have, the more likely
it is to stay in the blockchain.

Each client is free to choose how many confirmations to
wait for in order to consider a transaction as committed to
the blockchain.

With high probability, a client is recommended to wait for 6
confirmations before considering a transaction completed.

Note that Bitcoin lacks finality: a transaction can never be
100% guaranteed to stay in the blockchain!

ZHANG ET AL. © 2019

Preventing double spending
Transaction A

฿1 ->
Merchant 1

Transaction B
฿1 ->

Merchant 2

A malicious attacker creates two transactions
using the same money (double-spending)

Block N
A

Block N+1
…

Block N+2
…

Block N+3
…

Suppose A is added to block N, and
merchant 1 confirms the transaction
after waiting for a few blocks

Block N’
B

Block N’+1
…

Block N’+2
…

Block N’+3
…

Block N’+4
…

Attacker chain

Real chain

It must replace A with B in N,
and solve the modified
puzzles for the blocks faster
than the real chain grows so
that it can become longer

• The continuous generation of blocks in the main chain
limits the amount of time an attacker has to create its
own chain.

• If the attacker owns >51% of the power in the network,
it will eventually surpass the main chain and be able to
tamper existing data!

ZHANG ET AL. © 2019

(51% Attack)

Why maintain Bitcoin?
Two incentive mechanisms in Bitcoin
◦ Block creation reward: a block proposal creates a number

of new bitcoins and transfers them to the proposer
◦ The only way to create new bitcoins

◦ The amount is predefined and gets halved every 210,000 blocks

◦ Predicted to go down to zero before year 2140

◦ The geometric progression totals to 21 million bitcoins

◦ Transaction inclusion fee: Alice can decide to pay a small
fee to the block creator as part of her transaction
◦ Voluntarily, there is no predefined amount

◦ Miners will naturally prefer to mine transactions with higher fees

◦ These fees are collected in the coinbase transaction
◦ Sends the bitcoins to the address of the miner

ZHANG ET AL. © 2019

Transactions

ZHANG ET AL. © 2019

UTXO vs. Balance

In the balance model, the system maintains the sum of currencies held by an
account

It is the most popular and intuitive model

ZHANG ET AL. © 2019

UTXO Model

ZHANG ET AL. © 2019

In the “Unspent Transaction Output” model, there is no balance or concept
of account.

To spend money, we simply transfer a “check” from one person to another.

Bitcoin uses this model!

Bitcoin Transactions

Each user possesses a
wallet identified by
public/private key pairs

Transaction A

in out 1

out 2
฿1 -> Alice

Transaction C
(by Alice)

in 1

Transaction B

in 1

out 1
฿2 -> Alice

in 2

out 1
฿2 -> Bob

out 3
฿0.1 -> _

out 2
฿0.9 -> Carol

User encrypts a new
transaction C using

the private key

Tx C must reference
unspent transactions
outputs (UTXOs) from

previous blocks equal to
the total output of tx C (3

BTC)

C contains outputs to
wallet addresses

The transaction fee is
given as reward (explained

later)

Once spent, a TXO cannot
be used again: miners

verify every transaction

ZHANG ET AL. © 2019

Wallets and addresses
Users generates its own key pairs
◦ This includes any user, including but not limited to miners

◦ Uses ECDSA with 256 bits (Elliptic curve cryptography)

To receive bitcoins, a user will normally share an address
◦ This address is generated from its public key

◦ The user can claim a transaction output to an address by signing with
the associated private key

Key pairs management
◦ Each user is encouraged to generate a new key pair per transaction

◦ A wallet is used to manage multiple key pairs

◦ Certain wallets can also generate key pairs (see HD Wallet)

ZHANG ET AL. © 2019

Wallet security

Losing your private key:
◦ Loss of private key means any UTXO to the associated address cannot be redeemed

◦ This money is essentially lost, thereby reducing the total amount of currency in Bitcoin

◦ Trusting an online service to store your private key is also risky, since there is no way to
prove that you are the rightful owner if the key is stolen or misused

◦ The most reliable solution is to store your private keys on tamper-proof hardware
wallets or to memorize them (e.g. using a seed phrase)

ZHANG ET AL. © 2019

Transaction Flow

Alice
(Sender)

Bob
(Receiver)

1. Bob generates and send a public key address.
2. Alice creates a transaction using this address.
3. Alice sends the new transaction to the network.
4. The transaction is broadcast using gossiping.
5. The transaction is included in a block.
6. Bob can verify the transaction is in the blockchain.
7. Bob can now sign new transactions which redeem this address.

Transaction B

in 1
Bob.Address1

out 1

Transaction A

in 1

out 1
฿1 ->

Bob.Address1

ZHANG ET AL. © 2019

“Smart contracts” in Bitcoin
A transaction output includes a verification script
◦ representing the conditions under which the output can

be redeemed, i.e., included as an input in a later
transaction

◦ A typical script: “can be redeemed by a public key that
hashes to X, along with a signature from the key owner”

There is also a redeeming script attached to the input

Both scripts are executed by whoever verifies the
redeeming transaction, such as a proposer

A script language with an order of 200 commands
◦ Support for cryptographic primitives

ZHANG ET AL. © 2019

Redeem a UTXO (P2PKH)

ZHANG ET AL. © 2019

pubKeyHash

pubKey
sig

Size of ledger: 219 GB (2019/06)

ZHANG ET AL. © 2019

Data Structure within a Block
To avoid hashing the entire block data

when computing PoW, only the root hash
of the Merkle tree is included.

For users without a full copy of the
blockchain, simple payment verification
(SPV) is used to verify if a specific
transaction exists.
SPV users have a full copy of the block

headers

A Merkle proof contains the transaction
itself, all hashes to go up from the
transaction to the root, e.g., Hash01,
Hash2 (for Tx3).

Merkle Tree

ZHANG ET AL. © 2019

Networking
GOSSIPING PROTOCOLS

ZHANG ET AL. © 2019

Presentation by Yahya Shahsavari, PhD Student at ÉTS Montréal

Analysis of Bitcoin
LIMITATIONS AND SOLUTIONS

ZHANG ET AL. © 2019

Low transaction throughput
Bitcoin has a max throughput of 7 transactions/second

◦ VISA Network: 2000 tps (average)

Two factors: block size (1 MB) and block time (10 minutes)

SegWit addresses the block size issue:

◦ Separates scripts and signatures from the block proper

◦ Increases the number of transactions per block

Slow block time:

◦ Ethereum uses a much faster time of 10-20 seconds

◦ But this increases the number of forks (concurrent proposed blocks)

◦ Ethereum uses a different consensus protocol

Other solution: Lightning network
◦ Layer 2 microtransactions

◦ Periodic settlement on the blockchain

ZHANG ET AL. © 2019

Hard/soft forks
Updates to the code cause forks

To preserve backward compatibility, soft forks cannot make
drastic changes to the code

◦ C.f. the complexity of SegWit and its limited impact

If not possible, a hard fork is created
◦ This duplicates the money prior to the fork

There exists over 13700 cryptocurrencies
◦ Many are forks of the original Bitcoin

ZHANG ET AL. © 2019

Energy consumption of PoW
Environmental impact: ~1000x more energy than credit card

Currently 43th in energy consumption (comparable to
Switzerland)

ZHANG ET AL. © 2019

Alternative: Proof-of-Stake
Simple PoS solution:

◦ sha256(PREVHASH + ADDRESS + TS) <= 2^256 * BALANCE /
DIFFICULTY

◦ ADDRESS of wallet of the miner, BALANCE is the recorded stake for
the wallet

◦ TS is the timestamp in UNIX time (seconds)

◦ Thus, only one hash needed per second (per wallet)

Branches can still exist in PoS:

◦ Due to propagation delays, multiple timestamps are valid for a block

◦ The puzzle function does not return an unique winner

Nothing-at-Stake problem:

◦ PoW: cannot mine parallel branches since splitting resources is not
effective

◦ PoS: mining parallel branches is easy since it only requires 1 hash/s

◦ Slasher algorithm: detection of parallel mining confiscates the stake

ZHANG ET AL. © 2019

“Meaningful” PoW

ZHANG ET AL. © 2019

Variance in mining rewards
Current global hash rate: 48,000,000 TH/s
◦ Expected time to block for a single GPU: 7 million years!

Solution: pools allow miners to combine their hashing
power
◦ Reduces variance

◦ Miners must trust the pool operator to divide the rewards fairly

Solution: Share-based mining

◦ Miners submit shares with low difficulty to prove their hash rate

◦ Divide the rewards based on shares: PPS, Score-based, etc.

◦ Attacks possible: lie-in-wait, block withholding…

Centralisation of mining power
◦ Threat of 51% attacks

◦ Other attacks possible with less power (e.g. selfish mining)

ZHANG ET AL. © 2019

Blockchain
Systems
ETHEREUM

HYPERLEDGER

ZHANG ET AL. © 2019

Managing entity: Ethereum Foundation
◦ Major players: Deloitte, Toyota, Microsoft, …

Focus: Open-source, flexible, platform
◦ Cryptocurrency: 1 Ether = 1e18 Wei (502 USD, 2018/04)
◦ Smart contracts: Solidity, Remix (Web IDE), Truffle (Dev./Test), Vyper
◦ Ethereum Virtual Machine (EVM), Ethereum Web Assembly (eWASM)
◦ Permisionless (public) ledger: Proof-of-Work, Proof-of-Stake (Casper)

Notes
◦ DOA Event: $150 million lost, hard forked into Eth. Classic
◦ GHOST Protocol: Merging of branches (uncle blocks)
◦ Ethash: Memory-hard hashing protocol which is ASIC-resistant
◦ Scalability: L1 Sharding and L2 Plasma

ZHANG ET AL. © 2019

Block 4

Proof-of-Work:
000000r9d8fjj

Previous block:
00000090b41bx

Block 3

Proof-of-Work:
00000090b41bx

Previous POW:
000000948fixf

Contract
102890h

Transaction
1236foer

Transaction
4364rote

Smart Contracts

nonce
87874951

Transaction
D

Transaction
N

Transaction
C

nonce
79146512

Chainstate
Database

Wallet ID Held Titles

99823428347 34356,324324

98217981623 677343,4444

90987344755 994,38842,439

- Contracts contain executable bytecode
- Created with a blockchain tx
- Contracts have internal storage

Contracts execute when triggered by a
transaction (or by another contract)
Execution time is limited by gas
Example: Land registry

ZHANG ET AL. © 2019

Account State (“World State”)

Chainstate
Database

Wallet ID Balance Code Hash Internal State

99823428347 45.12 - 99554HGJ

98217981623 1123.332 9ERU12T4 3453ADFG

90987344755 9.3444 0490CNDJ 132GJR4

Merkle Patricia Tree

Contract
account

Externally
controlled
account

…

… …

ZHANG ET AL. © 2019

Execution and Mining

Block 4

Proof-of-Work:
000000r9d8fjj

Previous block:
00000090b41bx

Transaction
Trie

State Trie
Root Hash

Receipts
Trie Root

Hash

Contains all
transactions in the
block structured as

a Merkle Tree

Transaction C
(by Alice)

• Inputs
• Outputs
• Gas limit
• Gas price

Transaction fee =
max(gas_limit,

gasUsed) x gasPrice
Root Hash of the Merkle Patricia

Tree after txs are applied

Log the outcome of each
transaction externally

Chainstate
Database

ZHANG ET AL. © 2019

Ethereum Virtual Machine

ZHANG ET AL. © 2019

Comparison with Bitcoin
Bitcoin Ethereum

Transactions Transfer of bitcoins Contract creation, transfer of
ether, contract calls, internal
transactions

Accounts User wallets Externally owned accounts,
contract accounts

Transaction fees Amount specified by sender Gas calculated using sender’s
values

Block content Transactions trie Transactions, State Root Hash,
Receipts Root Hash

Chainstate Database UTXO Model World state, balance, receipts,
bytecodes for contracts

Querying Simple Payment Verification Merkle proofs for events,
transactions, balance, etc.

ZHANG ET AL. © 2019

Managing entity: Hyperledger Consortium
◦ Major players: IBM, NEC, Intel, R3, …

Focus: Enterprise blockchains
◦ Permissioned ledger (private/consortium network)
◦ Open-source
◦ World state on CouchDB/LevelDB, event listener
◦ Membership service provider, access control, channels

Projects
◦ Fabric: Execute-Order-Validate transaction processing
◦ Sawtooth: Proof-of-Elapsed-Time (using Intel SGX)
◦ Composer: Smart contract language and development tool
◦ Cello: Blockchain-as-a-Service framework
◦ R3 Corda: Financial applications

ZHANG ET AL. © 2019

Fabric: Transaction processing flow

Committing
Peer

Committing
Peer

Committing
Peer

Orderer
Next
Block

Endorsing
Peer

Endorsing
Peer

Endorsing
Policy

Client

1. Client sends transaction, receives
endorsements with RW sets.

2. Client sends the endorsed
transaction to the orderer.

3. Orderer sends completed block
according to block size and time limit.

4. Validation peers compare and
apply the RW set with the current
state, aborting stale txs.

ZHANG ET AL. © 2019

Membership
Service Provider

Blockchain
Insights
BENEFITS AND CHALLENGES

TAXONOMY OF BLOCKCHAINS

RESEARCH OPPORTUNITIES

ZHANG ET AL. © 2019

59

Are multiple
parties

involved?
Start

In a non-federated environment,
logically centralised databases are
preferable. (e.g. Google Bigtable,

Facebook Cassandra)

Yes
Is it cost-

effective to
use a trusted
third party?

No Yes
The TTP manages a

centralized database as an
authoritative data source. The
TTP is responsible for ensuring

the reliability of the data.

Are all the
parties known

in advance?

No

Use a permissionless
blockchain: anyone
can join as a miner

Yes

Do the parties
trust each

other?

No

Is the data
publicly

accessible?

Use a public-facing,
permissioned

network

Use a business-facing,
permissioned network Yes

Yes

No

ZHANG ET AL. © 2019

Each party can maintain
separate copies of the data.

Inconsistencies can be
tolerated or repaired.

“CAP Theorem” for DLTs

Scalability
• High throughput
• Low latency
• Compact ledger state

Consistency
• Consensus
• Fork reconciliation
• Attack resilience

Decentralization
• Public network
• Cryptoeconomy
• Anonymity

“Choose 2 out of 3!”
Bitcoin: DC
Hyperledger: CS
Ethereum: DC(S?!)

ZHANG ET AL. © 2019

DCS Conjecture

#Matinno – Research Angles

“Choose” 2
out of 3!

Decentralization

Consistency

Scalability

Bitcoin: DC
Hyperledger: CS
Ethereum: DC(S?!)

Incentives, mining rewards
Privacy: Anonymity, fungibility

Endorsement policies, governance
Selective replication: State channels

Safe and verifiable smart contracts
Attacker models: <51% attacks

Security of off-chain services (e.g. exchanges)
“Garbage in, garbage out”: IoT barrier

Sharding, sidechains, tree-chains, …
Large-scale chainstate storage

Big Data analytics
Layer 2 Network: Lightning, Raiden

Proof-of-Stake, POET, PBFT, …

Investigate potential use cases
Choose and tune the right platform
Develop reusable middleware

ZHANG ET AL. © 2019

ZHANG, JACOBSEN © 2018 62

 DCS: May lead to fundamental research

 Applications: mostly 3.0, and some 2.0

 Layers: application, modeling, contract

Applicability of
blockchains

 Applications: 1.0 – off-chain exchanges and payment
networks, 2.0 – reusable online services, 3.0 – data
integration, analytics

 Layers: contract

Blockchain
middleware

 DCS: +DC, -S
 Applications: 1.0 –transactions, 2.0 – smart contracts,

3.0 – data privacy

 Layers: contract, system, data, (network)

Security and
privacy

 DCS: +S, -DC
 Applications: 1.0 – incremental, 2.0 – public smart

contracts, 3.0 – clean slate designs

 Layers: system (consensus), data

Scalable
system

innovations
ZHANG ET AL. © 2019

Blockchain 1.0: Currency

Over 13700 public cryptocurrencies available!

ZHANG ET AL. © 2019

Research for 1.0 Apps
Formally analyze the security model of Bitcoin
◦ 51% attack

◦ DoS attacks on: mining pools, currency exchanges, …

Conduct performance modelling
◦ Simulate various Bitcoin scenarios

◦ Understand impact of network topologies (e.g. partitions)

Develop scalable mechanisms with legacy support
to maintain the sustainability of Bitcoin
◦ SegWit2x

◦ Bitcoin-NG (NSDI ‘16)

◦ Off-chain (Lightning network)

◦ Algorand (SOSP ‘17)

ZHANG ET AL. © 2019

Blockchain 2.0: Decentralized Apps
ÐApps are applications built on
blockchain platforms using
smart contracts (e.g. Ethereum)

Charity donation paymentCrowdfunding

ZHANG ET AL. © 2019

Forecast market (e.g. betting, insurance)

Research for 2.0 Apps
Formal verify smart contracts, detect and repair
security flaws
◦ Ethereum Viper

Develop scalable consensus mechanisms which
support smart contracts in an public network (w/
incentives)
◦ Proof-of-Stake (Casper)
◦ Side-chain (Plasma)
◦ Sharding (ShardSpace)

Develop efficient data storage techniques to store
smart contracts and the chainstate
◦ AVL+ (Tendermint)
◦ Merkle Patricia Trees (Ethereum)
◦ Zero-Knowledge Proofs: zk-SNARK

ZHANG ET AL. © 2019

Blockchain 3.0: Pervasive Apps

Diamonds Provenance

Applications
involve entire

industries,
public sector,

and IoT.

Land Registry in Honduras

Electronic Health Records Transparent Voting System

ZHANG ET AL. © 2019

Killer app: Supply chain management?

ZHANG ET AL. © 2019

Containers shipping

Food crates

Research for 3.0 Apps
Develop “clean-slate” scalable distributed ledgers:
◦ Permissioned ledgers (Hyperledger Fabric)

◦ Blockless DLTs (IOTA Tangles, R3 Corda Notaries, Hashgraph)

Develop blockchain modelling tools and middleware
◦ BPMN, Business Artifacts with Lifecycles, FSM

◦ Authentication, reputation, auction, voting, etc.

Support strict governance, security, and privacy
requirements
◦ State channels

◦ Endorsement policies

Overcome the cyber-physical barrier for data entry:
◦ Object fingerprinting

◦ Secure hardware sensors

ZHANG ET AL. © 2019

IBM Verifier

ZHANG ET AL. © 2019

