Deconstructing Blockchains: Concepts, Systems, and Insights

Link to our companion papers:
http://msrg.org/papers/bcbi-tr
Acknowledgments

Collaborators:
- Kaiwen Zhang
- Hans-Arno Jacobsen
- Roman Vitenberg
- Mo Sadoghi
Understanding Blockchains

WHERE SHOULD WE FOCUS THIS YEAR?

“BLOCKCHAIN”

IT WILL CHANGE EVERYTHING.

EVERYBODY IS TALKING ABOUT IT.

THE POTENTIAL APPLICATIONS ARE ENDLESS.

WE DON’T WANT TO BE LEFT BEHIND.

WHAT EXACTLY IS BLOCKCHAIN?

ALSO, “ARTIFICIAL INTELLIGENCE”
Hype Cycle for Emerging Technologies, 2018

- Digital Twin
- Blockchain
- Deep Neural Nets (Deep Learning)
- Carbon Nanotube
- IoT Platform
- Virtual Assistants
- Silicon Anode Batteries
- Autonomous Driving Level 4
- Mixed Reality
- Connected Home
- Augmented Reality

Plateau will be reached in:
- less than 2 years
- 2 to 5 years
- 5 to 10 years
- more than 10 years

As of July 2018
Comparison with BTC price

CA$11,527.45

+ CA$11,544.87 (87.1K%)
Demand for blockchain jobs

Demand Growth for Engineering Roles

- Blockchain Engineer: +517%
- Security Engineer: 132%
- Embedded Engineer: 76%
- Data Engineer: 38%
- Back-End Engineer: 33%
- ML Engineer: 27%
- Mobile Engineer: 15%
- Full-Stack Engineer: 7%
- Front-End Engineer: 4%

computerworld.com/article/3345998/demand-for-blockchain-engineers-is-through-the-roof.html
Blockchain and Fortune 100 Companies

You may say that I’m just a freelance blockchain writer and my opinion doesn’t matter. Yes, I totally agree with that and that’s the reason why I attach the list of Fortune 100 companies already working on the implementation of the blockchain solutions in all spheres of human society. According to Cryptotapas, 82% of Fortune 100 companies work with blockchain. The list below is quoted from the same article:

1. Walmart

Walmart is implementing blockchain for its food businesses.

2. State Grid

The State Grid Corporation of India is using blockchain technology to improve data sharing.

5. Royal Dutch Shell

Royal Dutch says Blockchain will revolutionize and disrupt oil industry to trillion Dollar Industry.

6. Toyota Motor

Toyota seeks blockchain technology in developing Self Driving Cars.

7. Volkswagen

Volkswagen implements and backs Blockchain technology to drive the automobile industry to a new level.

https://medium.com/altcoin-magazine/blockchain-to-become-a-commonplace-for-fortune-100-companies-3a302526d8eb
Mining industry in Quebec
Blockchain 101

Distributed Ledger Technology (DLT)

Blockchain data structure (replicated at every peer)

- **Block 0**: Genesis Block
 - Transaction A
 - Transaction B
 - ...

- **Block 1**
 - Transaction D
 - Transaction E
 - ...

- **Block 2**
 - Transaction G
 - Transaction H
 - ...

Peer-to-Peer network

- **Client 1**
- **Client 2**

Replication

- **P1**
- **P2**
- **P3**
- **P4**

Consensus

Cryptography is used to...

...encrypt data, prevent modification, insert new blocks, execute transactions, and query... the distributed ledger
Cryptography: the Magic Ingredient!

Encrypt data: Public Key Encryption

Prevent modification: Hashed Linked List

Insert new blocks: Proof-of-Work

Execute transactions: Smart Contracts

Query the blockchain: Simple Payment Verification

Validation(Transaction)

Code Hash (Identical at all peers)

Merkle Tree

Zhang et al. © 2019
What is a blockchain-based distributed ledger?

- An append-only log storing transactions
- Comprised of immutable blocks of data
- Deterministically verifiable (using the blockchain data structure)
- Able to execute transactions programmatically (e.g., Bitcoin transactions and smart contracts)
- Fully replicated across a large number of peers (called miners in Bitcoin)
- A priori decentralized, does not rely on a third party for trust
Comparison with Databases

<table>
<thead>
<tr>
<th></th>
<th>Single Machine DBMSs</th>
<th>Distributed Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OLTP</td>
</tr>
<tr>
<td>Logically centralized (Single entity)</td>
<td>MySQL, Oracle, DB2, ...</td>
<td>NewSQL: Spanner, VoltDB</td>
</tr>
<tr>
<td>BerkeleyDB, LevelDB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decentralized (Public/Private)</td>
<td></td>
<td>Distributed Ledgers (DLT)</td>
</tr>
</tbody>
</table>

The key distinction is the use of *cryptography* to enable operation in a decentralized trustless environment.
Blockchain Reference Architecture

This vision diagram encompasses all aspects related to blockchain technologies.

Upper layers capture application semantics and their implementation.

Lower layers are concerned with technical system details.
System-Oriented Perspective

Layer 2
- Channels
- Commit-Chains
- Payment
- State
- Network

Layer 1
- Blockchains, side-chains
- Consensus Mechanism(s)
- Block i
- i+1
- i+2

Layer 0
- Networks (Public/Private)

Hardware Layer
- (Trusted) Hardware
Outline

Session 1: Foundations
 ◦ Bitcoin: Consensus, transactions, networking, rewards

Session 2.1: Beyond Bitcoin
 ◦ Smart contracts
 ◦ Platforms: Ethereum, Hyperledger

Session 2.2: Research
 ◦ System insights
 ◦ Research directions

Session 4: Hands-on tutorial on Ethereum
 ◦ Smart contract development and deployment
 ◦ Tools for deploying and managing Ethereum
Blockchain Concepts

DEFINITIONS

BITCOIN OVERVIEW
Immutability using Hashing

Blockchain data structure maintained at every peer

Block 0
- Block hash: 000000958fdji
- Previous block: -
 - Transaction 4325afde
 - Transaction 97875ihge
 - Transaction 4546ofre

Block 1
- Block hash: 000000948fixf
- Previous block: 000000958fdji
 - Transaction 1025asde
 - Transaction 8875iire
 - Transaction 4236owqe

Block 2
- Block hash: 000000948fixf
- Previous block: 000000948fixf
 - Transaction 0495fjdi
 - Transaction 1236foer

Block 3
- Block hash: ???
- Previous block: 00000090b41bx
 - Transaction 0495fjdi

Requires a Byzantine consensus algorithm!

Client 1
- P1
- P2
- P3
- P4

ZHANG ET AL. © 2019
Consensus
Consensus in Bitcoin

Byzantine consensus in history
- Dozens of impossibility results since 1983
- Does not scale beyond 30 participants
- Takes a long time to converge

Bitcoin requirements
- Decentralized and public network
- Supports 10,000 participants

Key insight: **Probabilistic consensus**

1. Make a proposal => Proof-of-Work
2. Decide a value => Longest branch selection
3. Announce the decision (finality) => Confirmations wait
Comparison with Basic Paxos

Self-appoint

“Can I lead b?”

Wait for majority

“OK, but”

Wait for majority

“v?”

“OK”

“v!”

1a

1b

2a

2b

3

Propose

Promise

Accept!

Ack

Commit

log

log

safe

L

N

ZHANG ET AL. © 2019
Block Proposal: Proof-of-Work

Each client maintains a *mempool* of unconfirmed transactions.

Each peer constructs its own block it wants to propose:
- Free to pick and choose transactions from its own *mempool*.

The fastest peer to solve the *cryptopuzzle* of its own block can propose the block to others:
- The block is sent through the P2P network.

Other peers can verify the validity of the cryptopuzzle solution.

Repeat the process for the next block.
Point of view of a miner

Pending Transactions Pool

Transaction C
Transaction D
... Transaction N

A miner verifies and puts transactions in a block, finds nonce

Block 0
Proof-of-Work: 000000958fdji
Previous block: -
Transaction 4325afde
Transaction 97875ihge
Transaction 4546ofre
nonce 04934938

Block 1
Proof-of-Work: 000000948fixf
Previous POW: 000000958fdji
Transaction 1025asde
Transaction 8875iire
Transaction 4236owqe
nonce 87465523

Block 2
Proof-of-Work: 000000948fixf
Previous POW: 000000948fixf
Transaction 0495fjdi
Transaction 1236foer
Transaction 4364rote
nonce 87874951

Block 3
2 Hash
Tx D
Tx N
Tx C
nonce

Hash(block, nonce) < 000000000000...

Find a valid nonce according to the difficulty to satisfy the target (e.g. 000000000000)

The miner attaches the solved block to the chain, or stops solving if someone else finds a valid block.
Cryptopuzzles in Bitcoin

The proposer has to find nonce, such that
- \(\text{hash(block_header)} < \text{target} \)

target is a fraction of the hash space
- Every node recomputes **target** every 2016 blocks
- Such that the average time for the whole network to solve a cryptopuzzle is 10 min
- A block time of 10 minutes ensures a significant amount of work is required to propose block
- Normally, only one block is proposed at a time, which simplifies consensus

For proposer \(p \),

\[
\text{mean time to next block} = \frac{10 \text{ minutes}}{\text{fraction of } p's \text{ computing power}}
\]

The solution is fast to verify
Fork choice rule: longest chain

Due to variance, one branch will find a block faster than the other.

Here, two blocks 3 are solved at the same time by different miners (very rare occurrence).

When miners receive a valid block from a longer branch, they throw away their own branch (txs are reverted).

Due to network delays, different miners begin working on their version of block 3.

Block 0
- Proof-of-Work: 000000958fdji
- Previous block: -
- Transactions...
- nonce

Block 1
- Proof-of-Work: 00000094f4xf
- Previous POW: 000000958fdji
- Transactions...
- nonce

Block 2
- Proof-of-Work: 0000009ff33xe
- Previous POW: 000000958fdji
- Transactions...
- nonce

Block 3
- Proof-of-Work: 0000009ff33xe
- Previous POW: 00000090b41bx
- Transactions...
- nonce

Block 4
- Proof-of-Work: 000000zzzbbf4
- Previous POW: 00000090b41bx
- Transactions...
- nonce

Block 5
- Proof-of-Work: 000000f32367x
- Previous POW: 000000zzzbbf4
- Transactions...
- nonce

Due to network delays, different miners begin working on their version of block 3.
Announcing results: Confirmation wait

When a transaction is included in a newly mined block, it is said to have “one confirmation”.

Each subsequence block mined afterwards adds one confirmation to the transaction.

The more confirmations a transaction have, the more likely it is to stay in the blockchain.

Each client is free to choose how many confirmations to wait for in order to consider a transaction as committed to the blockchain.

With high probability, a client is recommended to wait for 6 confirmations before considering a transaction completed.

Note that Bitcoin lacks finality: a transaction can never be 100% guaranteed to stay in the blockchain!
Preventing double spending

A malicious attacker creates two transactions using the same money (double-spending).

Block N
- Transaction A: ฿1 -> Merchant 1

Real chain
- Block N+1
- Block N+2
- Block N+3

Block N’
- Transaction B: ฿1 -> Merchant 2

Attacker chain
- Block N’+1
- Block N’+2
- Block N’+3
- Block N’+4

- The *continuous generation* of blocks in the main chain limits the amount of time an attacker has to create its own chain.
- If the attacker owns >51% of the power in the network, it will eventually surpass the main chain and be able to tamper existing data!
Why maintain Bitcoin?

Two incentive mechanisms in Bitcoin

- Block creation reward: a block proposal creates a number of new bitcoins and transfers them to the proposer
 - The only way to create new bitcoins
 - The amount is predefined and gets halved every 210,000 blocks
 - Predicted to go down to zero before year 2140
 - The geometric progression totals to 21 million bitcoins

- Transaction inclusion fee: Alice can decide to pay a small fee to the block creator as part of her transaction
 - Voluntarily, there is no predefined amount
 - Miners will naturally prefer to mine transactions with higher fees

- These fees are collected in the coinbase transaction
 - Sends the bitcoins to the address of the miner
Transactions
In the balance model, the system maintains the sum of currencies held by an account. It is the most popular and intuitive model.
In the “Unspent Transaction Output” model, there is no balance or concept of account.

To spend money, we simply transfer a “check” from one person to another. **Bitcoin uses this model!**
Each user possesses a wallet identified by public/private key pairs.

Transaction A

- **in**: 1
- **out 1**: ฿1
- **out 2**: ฿1 -> Alice

Transaction B

- **in 1**: ฿2
- **out 1**: ฿2 -> Alice

Transaction C (by Alice)

- **in 1**: ฿2
- **out 1**: ฿2 -> Bob
- **out 2**: ฿0.9 -> Carol
- **out 3**: ฿0.1 -> _

User encrypts a new transaction C using the private key.

C contains outputs to wallet addresses.

The transaction fee is given as reward (explained later).

Once spent, a TXO cannot be used again: miners verify every transaction.
Wallets and addresses

Users generates its own key pairs

- This includes any user, **including but not limited to** miners
- Uses ECDSA with 256 bits (Elliptic curve cryptography)

To receive bitcoins, a user will normally share an address

- This address is generated from its public key
- The user can claim a transaction output to an address by signing with the associated private key

Key pairs management

- Each user is encouraged to generate a new key pair per transaction
- A wallet is used to manage multiple key pairs
- Certain wallets can also generate key pairs (see **HD Wallet**)

ZHANG ET AL. © 2019
Losing your private key:

- Loss of private key means any UTXO to the associated address cannot be redeemed
- This money is essentially lost, thereby reducing the total amount of currency in Bitcoin
- Trusting an online service to store your private key is also risky, since there is no way to prove that you are the rightful owner if the key is stolen or misused
- The most reliable solution is to store your private keys on tamper-proof hardware wallets or to memorize them (e.g. using a seed phrase)
Transaction Flow

1. Bob generates and send a public key address.
2. Alice creates a transaction using this address.
3. Alice sends the new transaction to the network.
4. The transaction is broadcast using gossiping.
5. The transaction is included in a block.
6. Bob can verify the transaction is in the blockchain.
7. Bob can now sign new transactions which redeem this address.

Transaction A
- **in 1**
- **out 1**

$1 \rightarrow Bob.Address1$

Transaction B
- **in 1**
- **out 1**

Bob.Address1
“Smart contracts” in Bitcoin

A transaction output includes a verification script

◦ representing the conditions under which the output can be redeemed, i.e., included as an input in a later transaction

◦ A typical script: “can be redeemed by a public key that hashes to X, along with a signature from the key owner”

There is also a redeeming script attached to the input

Both scripts are executed by whoever verifies the redeeming transaction, such as a proposer

A script language with an order of 200 commands

◦ Support for cryptographic primitives
Redeem a UTXO (P2PKH)
Size of ledger: 219 GB (2019/06)

Blockchain Size
151.2 GB
Data Structure within a Block

- To avoid hashing the entire block data when computing PoW, only the root hash of the Merkle tree is included.

- For users without a full copy of the blockchain, *simple payment verification (SPV)* is used to verify if a specific transaction exists.
 - SPV users have a full copy of the block headers
 - A *Merkle proof* contains the transaction itself, all hashes to go up from the transaction to the root, e.g., Hash01, Hash2 (for Tx3).
Networking

GOSSIPING PROTOCOLS
Low transaction throughput

Bitcoin has a max throughput of 7 transactions/second
 ◦ VISA Network: 2000 tps (average)

Two factors: block size (1 MB) and block time (10 minutes)

SegWit addresses the block size issue:
 ◦ Separates scripts and signatures from the block proper
 ◦ Increases the number of transactions per block

Slow block time:
 ◦ Ethereum uses a much faster time of 10-20 seconds
 ◦ But this increases the number of forks (concurrent proposed blocks)
 ◦ Ethereum uses a different consensus protocol

Other solution: Lightning network
 ◦ Layer 2 microtransactions
 ◦ Periodic settlement on the blockchain
Hard/soft forks

Updates to the code cause forks

To preserve backward compatibility, soft forks cannot make drastic changes to the code
- C.f. the complexity of SegWit and its limited impact

If not possible, a hard fork is created
- This duplicates the money prior to the fork

There exists over 13700 cryptocurrencies
- Many are forks of the original Bitcoin
Energy consumption of PoW

Environmental impact: ~1000x more energy than credit card

Currently 43th in energy consumption (comparable to Switzerland)
Alternative: Proof-of-Stake

Simple PoS solution:
- $sha256(PREVHASH + ADDRESS + TS) \leq 2^{256} \times BALANCE / DIFFICULTY$
- ADDRESS of wallet of the miner, BALANCE is the recorded stake for the wallet
- TS is the timestamp in UNIX time (seconds)
- Thus, only one hash needed per second (per wallet)

Branches can still exist in PoS:
- Due to propagation delays, multiple timestamps are valid for a block
- The puzzle function does not return an unique winner

Nothing-at-Stake problem:
- PoW: cannot mine parallel branches since splitting resources is not effective
- PoS: mining parallel branches is easy since it only requires 1 hash/s
- Slasher algorithm: detection of parallel mining confiscates the stake
“Meaningful” PoW

Primecoin

FoldingCoin

Mine Medicine, Not Hashes
Variance in mining rewards

Current global hash rate: 48,000,000 TH/s
- Expected time to block for a single GPU: 7 million years!

Solution: pools allow miners to combine their hashing power
- Reduces variance
- Miners must trust the pool operator to divide the rewards fairly

Solution: Share-based mining
- Miners submit shares with low difficulty to prove their hash rate
- Divide the rewards based on shares: PPS, Score-based, etc.
- Attacks possible: lie-in-wait, block withholding...

Centralisation of mining power
- Threat of 51% attacks
- Other attacks possible with less power (e.g. selfish mining)
Blockchain Systems

ETHEREUM
HYPERLEDGER
Managing entity: Ethereum Foundation
- Major players: Deloitte, Toyota, Microsoft, ...

Focus: Open-source, flexible, platform
- Cryptocurrency: 1 Ether = 1e18 Wei (502 USD, 2018/04)
- Smart contracts: Solidity, Remix (Web IDE), Truffle (Dev./Test), Vyper
- Ethereum Virtual Machine (EVM), Ethereum Web Assembly (eWASM)
- Permissionless (public) ledger: Proof-of-Work, Proof-of-Stake (Casper)

Notes
- DOA Event: $150 million lost, hard forked into Eth. Classic
- GHOST Protocol: Merging of branches (uncle blocks)
- Ethash: Memory-hard hashing protocol which is ASIC-resistant
- Scalability: L1 Sharding and L2 Plasma
Smart Contracts

- Contracts contain *executable bytecode*
- Created with a blockchain tx
- Contracts have internal storage

Contracts execute when triggered by a transaction (or by another contract)
Execution time is limited by *gas*

Example: Land registry

<table>
<thead>
<tr>
<th>Wallet ID</th>
<th>Held Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>99823428347</td>
<td>34356,324324</td>
</tr>
<tr>
<td>98217981623</td>
<td>677343,4444</td>
</tr>
<tr>
<td>90987344755</td>
<td>994,38842,439</td>
</tr>
</tbody>
</table>

Chainstate Database

Block 3
- Proof-of-Work: 00000090b41bx
- Previous POW: 00000948fixf

- Contract 102890h
- Transaction 1236foer
- Transaction 4364rote
- nonce 87874951

Block 4
- Proof-of-Work: 000000r9d8fjj
- Previous block: 0000090b41bx

- Transaction D
- Transaction N
- Transaction C
- nonce 79146512

Contracts
- contain *executable bytecode*
- Created with a blockchain tx
- have internal storage

Example: Land registry
Account State ("World State")

<table>
<thead>
<tr>
<th>Wallet ID</th>
<th>Balance</th>
<th>Code Hash</th>
<th>Internal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>99823428347</td>
<td>45.12</td>
<td>-</td>
<td>99554HGJ</td>
</tr>
<tr>
<td>98217981623</td>
<td>1123.332</td>
<td>9ERU12T4</td>
<td>3453ADFG</td>
</tr>
<tr>
<td>90987344755</td>
<td>9.3444</td>
<td>0490CNDJ</td>
<td>132GJR4</td>
</tr>
</tbody>
</table>

Chainstate Database

- Externally controlled account
- Contract account

Merkle Patricia Tree
Execution and Mining

Block 4
Proof-of-Work: 000000r9d8ffj
Previous block: 00000090b41bx

Transaction Trie

State Trie
Root Hash

Receipts Trie
Root Hash

Contains all transactions in the block structured as a Merkle Tree

Transaction C (by Alice)
• Inputs
• Outputs
• Gas limit
• Gas price

Transaction fee = max(gas_limit, gasUsed) x gasPrice

Root Hash of the Merkle Patricia Tree after txs are applied

Log the outcome of each transaction externally

Chainstate Database
Ethereum Virtual Machine

Architecture

<table>
<thead>
<tr>
<th>Stack machine</th>
<th>Turing complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction set</td>
<td>~180 Opcodes</td>
</tr>
</tbody>
</table>

Memory type

<table>
<thead>
<tr>
<th>Stack</th>
<th>volatile</th>
<th>byte-array (list [])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>volatile</td>
<td>byte-array (list [])</td>
</tr>
<tr>
<td>Storage</td>
<td>persistent</td>
<td>key-value database (dictionary {})</td>
</tr>
</tbody>
</table>
Comparison with Bitcoin

<table>
<thead>
<tr>
<th></th>
<th>Bitcoin</th>
<th>Ethereum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactions</td>
<td>Transfer of bitcoins</td>
<td>Contract creation, transfer of ether, contract calls, internal transactions</td>
</tr>
<tr>
<td>Accounts</td>
<td>User wallets</td>
<td>Externally owned accounts, contract accounts</td>
</tr>
<tr>
<td>Transaction fees</td>
<td>Amount specified by sender</td>
<td>Gas calculated using sender’s values</td>
</tr>
<tr>
<td>Block content</td>
<td>Transactions trie</td>
<td>Transactions, State Root Hash, Receipts Root Hash</td>
</tr>
<tr>
<td>Chainstate Database</td>
<td>UTXO Model</td>
<td>World state, balance, receipts, bytecodes for contracts</td>
</tr>
<tr>
<td>Querying</td>
<td>Simple Payment Verification</td>
<td>Merkle proofs for events, transactions, balance, etc.</td>
</tr>
</tbody>
</table>
Managing entity: Hyperledger Consortium
 ◦ Major players: IBM, NEC, Intel, R3, ...

Focus: Enterprise blockchains
 ◦ Permissioned ledger (private/consortium network)
 ◦ Open-source
 ◦ World state on CouchDB/LevelDB, event listener
 ◦ Membership service provider, access control, channels

Projects
 ◦ Fabric: Execute-Order-Validate transaction processing
 ◦ Sawtooth: Proof-of-Elapsed-Time (using Intel SGX)
 ◦ Composer: Smart contract language and development tool
 ◦ Cello: Blockchain-as-a-Service framework
 ◦ R3 Corda: Financial applications
Fabric: Transaction processing flow

1. Client sends transaction, receives endorsements with RW sets.
2. Client sends the endorsed transaction to the orderer.
3. Orderer sends completed block according to block size and time limit.
4. Validation peers compare and apply the RW set with the current state, aborting stale txs.
Blockchain Insights

BENEFITS AND CHALLENGES

TAXONOMY OF BLOCKCHAINS

RESEARCH OPPORTUNITIES
Are multiple parties involved?

In a non-federated environment, logically centralised databases are preferable. (e.g. Google Bigtable, Facebook Cassandra)

Is it cost-effective to use a trusted third party?

The TTP manages a centralized database as an authoritative data source. The TTP is responsible for ensuring the reliability of the data.

Are all the parties known in advance?

Use a permissionless blockchain: anyone can join as a miner

Do the parties trust each other?

Each party can maintain separate copies of the data. Inconsistencies can be tolerated or repaired.
"CAP Theorem" for DLTs

Scalability
• High throughput
• Low latency
• Compact ledger state

"Choose 2 out of 3!"

Bitcoin: DC
Hyperledger: CS
Ethereum: DC(S?!)

Consistency
• Consensus
• Fork reconciliation
• Attack resilience

Decentralization
• Public network
• Cryptoeconomy
• Anonymity
DCS Conjecture

Safe and verifiable smart contracts
Attacker models: <51% attacks
Security of off-chain services (e.g. exchanges)
“Garbage in, garbage out”: IoT barrier

Choose 2 out of 3!

Decentralization

- Incentives, mining rewards
- Privacy: Anonymity, fungibility
- Endorsement policies, governance
- Selective replication: State channels

Consistency

- Sharding, sidechains, tree-chains, ...
- Large-scale chainstate storage
- Big Data analytics
- Layer 2 Network: Lightning, Raiden
- Proof-of-Stake, POET, PBFT, ...

Scalability

- Bitcoin: DC
- Hyperledger: CS
- Ethereum: DC(S?!)
Applicability of blockchains
- DCS: May lead to fundamental research
- Applications: mostly 3.0, and some 2.0
- Layers: application, modeling, contract

Blockchain middleware
- Applications: 1.0 – off-chain exchanges and payment networks, 2.0 – reusable online services, 3.0 – data integration, analytics
- Layers: contract

Security and privacy
- DCS: +DC, -S
- Applications: 1.0 – transactions, 2.0 – smart contracts, 3.0 – data privacy
- Layers: contract, system, data, (network)

Scalable system innovations
- DCS: +S, -DC
- Applications: 1.0 – incremental, 2.0 – public smart contracts, 3.0 – clean slate designs
- Layers: system (consensus), data
Blockchain 1.0: Currency

Over 13700 public cryptocurrencies available!
Research for 1.0 Apps

Formally analyze the security model of Bitcoin
- 51% attack
- DoS attacks on: mining pools, currency exchanges, ...

Conduct performance modelling
- Simulate various Bitcoin scenarios
- Understand impact of network topologies (e.g. partitions)

Develop scalable mechanisms with legacy support to maintain the sustainability of Bitcoin
- SegWit2x
- Bitcoin-NG (NSDI ‘16)
- Off-chain (Lightning network)
- Algorand (SOSP ‘17)
Blockchain 2.0: Decentralized Apps

DApps are applications built on blockchain platforms using smart contracts (e.g. Ethereum)

Ethereum

Gnosis

Forecast market (e.g. betting, insurance)

EtherTweet

Token Distribution

Crowdfunding

Charity donation payment

ZHANG ET AL. © 2019
Research for 2.0 Apps

Formal verify smart contracts, detect and repair security flaws
- Ethereum Viper

Develop scalable consensus mechanisms which support smart contracts in an public network (w/ incentives)
- Proof-of-Stake (Casper)
- Side-chain (Plasma)
- Sharding (ShardSpace)

Develop efficient data storage techniques to store smart contracts and the chainstate
- AVL+ (Tendermint)
- Merkle Patricia Trees (Ethereum)
- Zero-Knowledge Proofs: zk-SNARK
Blockchain 3.0: Pervasive Apps

Applications involve entire industries, **public sector**, and IoT.

- Diamonds Provenance
- Land Registry in Honduras
- Electronic Health Records
- Transparent Voting System
Killer app: Supply chain management?

Containers shipping

Food crates
Research for 3.0 Apps

Develop "clean-slate" scalable distributed ledgers:
- Permissioned ledgers (Hyperledger Fabric)
- Blockless DLTs (IOTA Tangles, R3 Corda Notaries, Hashgraph)

Develop *blockchain modelling tools and middleware*
- BPMN, Business Artifacts with Lifecycles, FSM
- Authentication, reputation, auction, voting, etc.

Support strict *governance, security, and privacy requirements*
- State channels
- Endorsement policies

Overcome the *cyber-physical barrier for data entry*:
- Object fingerprinting
- Secure hardware sensors

ZHANG ET AL. © 2019
IBM Verifier